57

$$
\begin{aligned}
& |s|=n . \quad \mathcal{F}=\left\{f_{i}: s \rightarrow s\right\} . \quad|\mathcal{F}|=n^{n} \\
& P_{i}=\operatorname{Pr}\left[c h o o s i n g \quad f_{i}\right] ; \quad \sum_{1} p_{i}=1 . \\
& \widetilde{P}_{s s^{\prime}}=\sum_{f_{i}: f(s)=s^{\prime}} P_{i} ; \quad \sum_{s^{\prime}} P_{s s^{\prime}}=1, \quad \text { since } \\
& \mathcal{F}_{s}=\bigcup_{s^{\prime}}\left\{f_{i}: f_{i}(s)=s^{\prime}\right\}=\mathcal{F}^{\prime} .
\end{aligned}
$$

Let P be the input matrix. Define $Q=P$, start with $\widetilde{P}=0$.

$$
Q_{i}=\left\{q_{s s^{\prime}}: f_{i}(s)=s^{\prime}\right\} ; q_{i}=\min Q_{i}
$$

for f_{i} in f :
if $q_{i}=0$:
continue.
else:

$$
p_{i}:=q_{i}
$$

for $q_{s s^{\prime}}$ in Q_{i} :

$$
q_{s s^{\prime}}=q_{s s^{\prime}}-q_{i}
$$

recompute q_{i} 's
return \tilde{P}.

Define $\bar{P}_{i}=\left\{\tilde{P}_{s s^{\prime}}: f_{i}(s)=s^{\prime}\right\}$.
Claim: $Q+\tilde{p}$ is invariant at each iteration. At each iteration, either nothing happens, or $q_{s s^{\prime}}=q_{s s^{\prime}}-q_{i}, \quad \tilde{p}_{s s^{\prime}}=\tilde{p}_{s s^{\prime}}+q_{i}$.

Claim: At end of iteration $i, q_{i}=0$ Either in the beginning, $q_{i}=0$, or $q_{i}>0, q_{i}=\min Q_{i}$ at some $q_{t t^{i}}$. At the end of the iteration, $q_{t t^{\prime}}=q_{t t^{\prime}}-q_{i}$ $=0$

$$
\therefore q_{i}=\min Q_{i}=0
$$

claim: Row sum of \tilde{P} is invariant.

$$
\forall s, \sum_{s^{\prime}} p_{s s^{\prime}}=\sum_{i \in \mathcal{F}_{s}} f_{i}=\sum_{i \in \mathcal{F}^{\prime}} f_{i}
$$

This also implies row sum of Q is inv.
Claim: $Q=0$ at the last iteration.
Suppose $q_{s s^{\prime}}>0$. Then every row has a $q_{s_{i} s_{i}^{\prime}}>0$. Consider $f_{\alpha}: s_{i} \mapsto s_{i}^{\prime} . q_{\alpha}>0$. at final iteration. Contradiction.

Initially $Q=P, \widetilde{P}=0$. Finally $Q=0$.

$$
\therefore \widetilde{P}=P
$$

