$$|S|=n$$
. $\mathcal{H}=\{f_i:S\rightarrow S\}$. $|\mathcal{H}|=n^n$
 $P_i=\Pr[\text{choosing }f_i]$. \mathcal{L}_i \mathcal{L}_i \mathcal{L}_i \mathcal{L}_i

$$f_s = \bigcup_{s'} \{f_i : f_i(s) = s'\} = \mathcal{F}$$
.

Let P be the input matrix.

Define
$$Q = P$$
, start with $P = 0$.

else:

return P.

Define P: = { pss: fi(s)= s'3.

(laim: Q+P is invariant at each iteration. At each iteration, either nothing happens, or 9ss, = 9ss, -9i, Pss, = Pss, +9i.

Claim: At end of iteration i, $q_i = 0$. Fither in the beginning, $q_i = 0$, or $q_i > 0$, $q_i = \min Q_i$ at some q_{tt} . At the end of the iteration, $q_{tt} = q_{tt} - q_i = 0$

.. 2:= min Qi = 0

(Paim: Row sum of P is invariant. Us, Si Pssi = S, fi = S, fi i = Fs i = Fs

This also implies now sum of Q is inv.

Chaim: Q=0 at the last iteration.

Suppose $q_{ss} > 0$. Then every row has a $q_{sis} > 0$. Consider $f_{\alpha} : s_i \mapsto s_i'$. $q_{\alpha} > 0$. at final iteration. Contradiction.

Initially Q=P, P=0. Finally Q=0.

$$P = P$$